## Tumber $\mathfrak{I b e o r y}$

## Attempt any FIVE problems. Each question carries 6 marks.

1. i. Let $n>2$ be a positive integer such that $\varphi(n) \mid n-1$. Prove that $n$ is squarefree.
ii. Let $p$ be an odd prime. Prove that

$$
1^{n}+2^{n}+\cdots+(p-1)^{n} \equiv \begin{cases}0 \quad(\bmod p) & \text { if } p-1 \nmid n \\ -1 \quad(\bmod p) & \text { if } p-1 \mid n\end{cases}
$$

2. Let $p=m+n+3$ be a prime with $m, n \in \mathbb{N}$. Prove that

$$
(m!+(m+1)!)(n!+(n+1)!) \equiv(-1)^{m} \quad(\bmod p)
$$

3. State whether the following statements are true or false, with brief but complete justifications:
i. The equation $3 X^{2}+5 Y^{2}=7 Z^{2}$ has no nontrivial solutions in integers.
ii. For every positive integer $n, 3$ is a primitive root for $7^{n}$.
4. Describe all primes $p$ for which 7 is a quadratic nonresidue.
5. Let $p$ be an odd prime and $q$ be a prime such that $p \equiv 1(\bmod q)$. Let $\nu$ be the highest power of $q$ dividing $p-1$; i.e., $q^{\nu} \mid p-1$ but $q^{\nu+1} \nmid p-1$. Write $R_{j}=\left\{x^{q^{j}}: x \in \mathbb{Z} / p \mathbb{Z}\right\} \subset \mathbb{Z} / p \mathbb{Z}$. Show that for all $j \geqslant \nu$, we have $R_{j}=R_{\nu}$. That is, the polynomials $X^{q^{j}} \in \mathbb{Z} / p \mathbb{Z}[X]$ take the same set of values for $j \geqslant \nu$.
6. State and prove the Möbius inversion formula. Use it to show that the following two formulas are equivalent: ${ }^{5}$

- $\tau(m n)=\sum_{d \mid(m, n)} \mu(d) \tau(m / d) \tau(n / d)$ for all positive integers $m$ and $n$.
- $\tau(m) \tau(n)=\sum_{d \mid(m, n)} \tau\left(m n / d^{2}\right)$ for all positive integers $m$ and $n$.

Here, $\tau$ is the usual divisor-counting function, and $(m, n)$ denotes the gcd of $m$ and $n$.
7. Are there nonzero integers $x, y, z$ such that

$$
3 x^{2}+13 y^{2}=z^{2} ?
$$

If yes, find all of them. If not, justify.
8. Show that, for $x \geqslant 2$ we have

$$
\sum_{p \leqslant x} \frac{\log ^{2} p}{p}=\frac{1}{2} \log ^{2} x+O(\log x)
$$

9. Prove that

$$
\left|\sum_{n \leqslant x} \frac{\mu(n)}{n}\right|<1
$$

for all $x \geqslant 2$, where $\mu$ is the Möbius function. [Hint. Look at $\sum_{n \leqslant x} \mu(n)\left[\frac{x}{n}\right]$ first. ]

[^0]
[^0]:    ${ }^{5}$ You are not asked to prove that the two formulas are correct (which they are)! "Equivalent" means one is true if and only if the other is true.

