MIDSEMESTRAL

Number Theory

0.

Attempt any FIVE problems. Each question carries 6 marks.

i. Let n > 2 be a positive integer such that φ(n)|n - 1. Prove that n is squarefree.
ii. Let p be an odd prime. Prove that

$$1^{n} + 2^{n} + \dots + (p-1)^{n} \equiv \begin{cases} 0 \pmod{p} & \text{if } p - 1 \nmid n, \\ -1 \pmod{p} & \text{if } p - 1 | n. \end{cases}$$

2. Let p = m + n + 3 be a prime with $m, n \in \mathbb{N}$. Prove that

 $(m!+(m+1)!)\,(n!+(n+1)!)\equiv (-1)^m \pmod{p}.$

- 3. State whether the following statements are true or false, with brief but complete justifications: 6
 - i. The equation $3X^2 + 5Y^2 = 7Z^2$ has no nontrivial solutions in integers.
 - ii. For every positive integer n, 3 is a primitive root for 7^n .

4. Describe all primes p for which 7 is a quadratic nonresidue.

- 5. Let p be an odd prime and q be a prime such that $p \equiv 1 \pmod{q}$. Let ν be the highest power of q = dividing p 1; i.e., $q^{\nu}|p 1$ but $q^{\nu+1} \nmid p 1$. Write $R_j = \{x^{q^j} : x \in \mathbb{Z}/p\mathbb{Z}\} \subset \mathbb{Z}/p\mathbb{Z}$. Show that for all $j \ge \nu$, we have $R_j = R_{\nu}$. That is, the polynomials $X^{q^j} \in \mathbb{Z}/p\mathbb{Z}[X]$ take the same set of values for $j \ge \nu$.
- 6. State and prove the Möbius inversion formula. Use it to show that the following two formulas are 6 equivalent:⁵
 - $\tau(mn) = \sum_{d \mid (m,n)} \mu(d) \tau(m/d) \tau(n/d)$ for all positive integers m and n.
 - $\tau(m)\tau(n) = \sum_{d|(m,n)} \tau(mn/d^2)$ for all positive integers m and n.

Here, τ is the usual divisor-counting function, and (m, n) denotes the gcd of m and n.

7. Are there nonzero integers x, y, z such that

$$3x^2 + 13y^2 = z^2?$$

If yes, find all of them. If not, justify.

8. Show that, for $x \ge 2$ we have

$$\sum_{p\leqslant x} \frac{\log^2 p}{p} = \frac{1}{2} \log^2 x + O(\log x).$$

9. Prove that

$$\sum_{n \leqslant x} \frac{\mu(n)}{n} < 1.$$

for all $x \ge 2$, where μ is the Möbius function. [*Hint.* Look at $\sum_{n \le x} \mu(n) \left\lceil \frac{x}{n} \right\rceil$ first.]

6

6

6

2

4

6

6

 $^{^{5}}$ You are *not* asked to prove that the two formulas are correct (which they are)! "Equivalent" means one is true if and only if the other is true.